Doctor of Philosophy (Ph.D.) in Materials Science and Engineering - Sarıyer - İstanbul - Koç Üniversitesi - I467

Home>Doktora Programları>Mühendislik>Sarıyer>Doctor of Philosophy (Ph.D.) in Materials Science and Engineering - Sarıyer - İstanbul
 
Doctor of Philosophy (Ph.D.) in Materials Science and Engineering
Metod: Kurumda
Yerleşim yeri:
Program Türü: Doktora Programları
Program ücreti: İsteğe Bağlı
Sponsor Linkler
Loading...

Sorularınız herhangi bir ücret alınmadan, doğrudan ilgili kuruma yönlendirilecektir
Koç Üniversitesi

Doctor of Philosophy (Ph.D.) in Materials Science and Engineering - Sarıyer - İstanbul

Ad
Soyad
E-posta adresi
Telefon Numarası
Yerleşim Yeri
Cep telefonu numarası
Yorumlar/ Sorular
İsteği göndermek için gizlilik politikasını kabul etmelisiniz
* Zorunlu Alanlar

İlgili Kurum’dan bir yetkili en kısa zamanda konuyla ilgili daha çok bilgi vermek amacıyla sizinle iletişime geçecek.
Lütfen her alanı doğru bir şekilde doldurunuz
Bu sayfayı paylaş - Mühendislik Doktora Programları:
Doctor of Philosophy (Ph.D.) in Materials Science and Engineering - Sarıyer - İstanbul Doctor of Philosophy (Ph.D.) in Materials Science and Engineering - Sarıyer - İstanbul
Program Tanımları:
Program Description

An interdisciplinary program on the physical and chemical fundamentals of material synthesis, characterization, structure-property behavior, processing and computational modeling; with emphasis on practical laboratory experience.
Research areas of interest
  • Nanostructured materials
  • Photonics & laser materials
  • Polymeric materials & composites
  • Fuel cells & hydrogen storage materials
  • Processing & device applications
  • Protein biochemistry & biotechnology
  • Micro-optics & micro-nano system technologies
Faculty and Research Areas

Chemical and Biological Engineering

  • Can Erkey ; Synthesis of Nanostructured Materials, Supercritical Fluids, Catalysis, Fuel Cells
  • Burak Erman ; Polymeric Solids and Liquids; Rubber Elasticity; Biopolymers
  • Halil Kavakli ; Biological Clock, Photoreceptors, Starch Biosynthesis
Chemistry
  • A. Levent Demirel ; Nanostructured Materials; Surface & Interface Properties
  • Mehmet Somer; Binary and Ternary Nitrides of Metals and Nonmetals,BN, AlN and Si3N4 Ceramics; Nanostructured Oxides, Sulphides and Fluorides; Intermetallic Compounds
  • Iskender Yilgor ; Polymer Synthesis, Structure-Property Relationships
  • H. Funda Yagci Acar ; Synthesis and Applications of Nanoparticles, Nanomaterials, Polymer Synthesis, Structure-Property Relations, Biomaterials
  • Ersin Yurtsever ; Stability and Thermodynamics of Nanostructures
  • Ugur Unal ; Synthesis and Applications of Nano size inorganic materials, Functional inorganic Layered Materials, Electrochemical, Photochemical Applications of Inorganic Materials (Solar Cells, Water Splitting, Photocatalytic Applications, Nano Cells)
  • Ozgur Birer; Spectroscopy, Nanomaterials, Bio-surfaces
Electrical Engineering
  • Hakan Urey ; Microsensors and Microactuators;Nanomagnetic Materials
Mechanical Engineering
  • Erdem Alaca ; Micro and Nanofabrication, MEMS-based Biosensors, Materials Behaviour, Engineering Mechanics
  • Demircan Canadinc ; Materials Behavior, Multi-scale Experimental and Computational Mechanics of Materials, Mechanically Active Materials, Ultra-fine Grained Materials, Biomaterials, High-Strength Steels
  • Ismail Lazoglu ; Manufacturing Automation, Process Modeling/Optimization/Monitoring/Control
  • Mehmet Sayar ; Molecular Dynamics and Monte Carlo Simulation of Soft-condensed Matter, Polymer Physics, Polyelectrolytes, Liquid Crystals, Biologically Inspired Materials, Mechanics of Single Molecules
  • Murat Sozer ; Manufacturing of Composite Materials
Physics
  • Nihat Berker ; Equilibrium and non-equilibrium statistical mechanics; finite-size, interface, and quantum effects in constrained and driven, magnetic and soft-condensed-matter systems.
  • Tekin Dereli ; Geometrical Dynamics of Nanotubes
  • Alper Kiraz ; Nano-Optics, Single Molecule Microscopy
  • Ozgur Mustecaplioglu ; Optical Properties of Semiconductors
  • Alphan Sennaroglu ; Photonic and solid-state materials, Spectroscopy, Femtosecond Optics
  • Ali Serpenguzel ; Optoelectronic Materials and Microphotonic Devices
Curriculum

Required core course(s):

MATH 503 Applied Mathematics

Elective courses (3 credit each):

MASE 510 Synthetic Polymer Chemistry
MASE 511 Introduction to Polymer Science
MASE 522 Vibrational Spectroscopy
MASE 530 Materials Behaviour
MASE 532 Statistical Mechanics of Polymers
MASE 534 Rubber Elasticity
MASE 536 Multicomponent Polymeric Systems
MASE 538 Intermolecular and Surface Forces
MASE 540 Surface & Interface Properties of Materials
MASE 542 Biomaterials
MASE 544 Nanoparticle Science and Technology
MASE 550 Optical Spectroscopy of Materials and Devices
MASE 570 Micro and Nanofabrication
MASE 571 Semiconductor Processing Methods

MATH 504 Numerical Methods
MATH 506 Numerical Methods II

MECH 541 Manufacturing of Advanced Engineering Materials
MECH 543 Computer Integrated Manfucturing and Automation
MECH 546 Machine Tools in Manufacturing
MECH 552 Introduction to Biomechanics
MECH 561 Mechanics of Condensed Matter

PHYS 509 Condensed Matter Physics I
PHYS 510 Condensed Matter Physics II
ECOE 521 Photonics and Lasers
ECOE 522 Micro-Opto-Electro-Mechanical Systems
ECOE 525 Photonic Materials & Devices

Courses are selected by the students from the above list and from other courses not listed here in accordance with their areas of specialization and subject to the approval of their advisors. In addition, each student has to take a seminar course, MASE 590 Seminar. Students also register for the thesis course.
  • MASE 590  Seminar
  • MASE 596  PhD Thesis
  • TEAC 500  Teaching Experience

Students who have TA assignments must take TEAC 500: Teaching Experience during the semesters of their assignments. Students must also take ENGL 500: Graduate Writing course.

Course Descriptions

Math 503
Applied Mathematics
Review of Linear Algebra and Vector Fields: Vector Spaces, Eigenvalue Problems, Quadratic Forms, Divergence Theorem and Stokes’ Theorem. Sturm-Liouville Theory and Orthogonal Polynomials, Methods of Solution of Boundary Value Problems for the Laplace Equation, Diffusion Equation and the Wave Equation. Elements of Variational Calculus.

MASE 510
Synthetic Polymer Chemistry
Introduction to polymers (nomenclature, tacticity, molecular weight, physical state, properties & applications); Synthesis of polymers and macromolecular structures: step growth polymerization, chain growth polymerization; polymer reactions. Pre-requisite: At least one semester of organic chemistry or Chem 307.

MASE 511
Introduction to Polymer Science
Differences between the small molecules and macromolecules, thermosets and thermoplastics, and structure-property relationships in polymers. Introduces main polymer families. Also discusses supramolecular structures, blends, composites and IPNs. Pre-requisite: Consent of the instructor.

MASE 522
Vibrational Spectroscopy
Molecular symmetry, group theory, reducible and irreducible representation, character tables, introduction to vibrational spectroscopy, Raman effect, infrared absorption, selection rules, pure rotational spectroscopy, normal modes, prediction and interpretation of the vibrational spectra of polyatomic species.

MASE 530
Materials Behaviour
Materials behavior using phenomenological and microstructure-based approaches. Topics include plasticity, fracture, fatigue and micromechanics.

MASE 532
Statistical Mechanics of Polymers
Statistical mechanics of the single chain, configurational averages, polymer solution statistics and thermodynamics, dilute and concentrated polymer solutions, the bulk state of polymers, critical phenomena and phase equilibria; numerical techniques for polymeric systems.

MASE 534
Rubber Elasticity
Classical theories of rubber elasticity, elasticity of the single chain, intermolecular effects, effects of entanglements, relationships between stress and strain, swelling of networks, critical phenomena and phase transitions in gels, thermoelastic behavior of elastomers, computational aspects.

MASE 536
Multicomponent Polymeric Materials
Block and segmented copolymers, polymer blends and composites; design, preparation, properties and applications of multicomponent polymeric materials; phase separation in polymeric systems; structure-morphology-property relations in multicomponent polymers.
Prerequisite: Chem 410, Mase 510, Mase 511.

MASE 538
Intermolecular and Surface Forces
Intermolecular forces which govern self-organization of biological and synthetic nanostructures. Thermodynamic aspects of strong (covalent and coulomb interactions) and weak forces (dipolar, hydrogen bonding). Self-assembling systems: micelles, bilayers, and biological membranes. Computer simulations for “hands-on” experience with nanostructures. Prerequisites: CHEM 301 or consent of the instructor.

MASE 540
Surface & Interface Properties of Materials
Fundamental physico-chemical concepts of surface and interface science; interaction forces in interfacial systems; surface thermodynamics, structure and composition, physisorption and chemisorption; fluid interfaces; colloids; amphiphilic systems; interfaces in polymeric systems & polymer composites; liquid coating processes.

MASE 542
Biomaterials
Materials for biomedical applications; synthetic polymers, metals and composite materials as biomaterials; biopolymers, dendrimers, hydrogels, polyelectrolytes, drug delivery systems, implants, tissue grafts, dental materials, ophthalmic materials, surgical materials, imaging materials.
Pre-requisite: At least one semester of organic chemistry or the consent of the instructor.

MASE 544
Nanoparticle Science and Technology
Size related properties of nanoparticles; synthetic strategies, main characterization tools, challenges and solutions, surface functionalization, technological applications and current trends.
Pre-requisite: Consent of the instructor.

MASE 550
Optical Spectroscopy of Materials and Devices
Absorption and emission of light, transition probabilities, lifetimes, spontaneous and radiationless transitions, natural linewidth, spectroscopic instrumentation, detection of light, lasers as spectroscopic light sources, fundamentals of lasers, nonlinear optical mixing techniques. Prerequisite: Consent of the instructor.

MASE 570
Micro and Nanofabrication
Fabrication and characterization of MEMS & NEMS. Topics include microfabrication, microlithography; etching techniques, physical & chemical vapor deposition processes; nanofabrication, top-down approaches, electron-beam lithography, SPM techniques, soft lithography; bottom-up techniques based on self-assembly.

MASE 571
Semiconductor Processing Methods
Introduction, material properties, crystal growth, epitaxy, ion implantation, cleaning, wet etching, photolithography, non-optical lithography, plasma processing, dry etching, metal deposition, diagnostic techniques.

Math 504
Numerical Methods I
Review of Linear Algebra: linear spaces, orthogonal matrices, norms of vectors and matrices, singular value decomposition. Projectors, QR Factorization Algorithms, Least Squares, Conditioning and Condition Numbers, Floating Point Representation, Stability, Conditioning and Stability of Least Squares, Conditioning and Stability Analysis of Linear Systems of Equations.

Math 506
Numerical Methods II
Numerical Solution of Functional Equations, the Cauchy Problem and Boundary Value Problems for Ordinary Differential Equations. Introduction to the Approximation Theory of One Variable Functions. Finite - difference Methods for Elementary Partial Differential Equations. Monte Carlo Method and Applications.

MECH 541
Manufacturing of Advanced Engineering Materials
Advanced engineering material manufacturing processes. Metals: material removal, addition, change of form. Plastics and composites: injection molding, compression molding, extrusion, sheet forming, tow placement, pultrusion, liquid molding, filament winding, autoclave. Similarities /differences of processes, advantages/disadvantages of processes, proper selection of manufacturing process, applications from industries, issues and their solutions, on- and off-line control.
Prerequisite: MECH 301and MECH 306 or consent of the instructor.

MECH 543
Computer Integrated Manufacturing and Automation
Product realization systems from Computer Aided Design (CAD) to Computer Aided Manufacturing (CAM). Manufacturing Automation. Modern sensors in manufacturing. Computer control of manufacturing systems. Computer Numerical Control (CNC) machine tools. Machining processes. Rapid prototyping. Fundamentals of industrial robotics.
Prerequisite: Consent of the instructor.

MECH 546
Machine Tools in Manufacturing
Mechanics of metal cutting. Static and dynamic deformations in machining. Chatter vibration and stability issues. Design and analysis of Computer Numerical Control (CNC) systems. Machine tool drives. Feedback devices. Electrical drives. State-space model of feed drive control system. Digital position control system design. Sensor-assisted intelligent machining. Hardware and software machining modules. Applications and projects.
Prerequisite: MECH 304 and MECH 306 or consent of the instructor.

MECH 552
Introduction to Biomechanics
Applications of mechanics to biological systems; basic principles of mechanics (force-moment, stress-strain, work, energy, rigid body dynamics), analysis of human movement, musculoskeletal mechanics, tissue mechanics, motor control system, sports biomechanics, and rehabilitation engineering.
Prerequisite: MECH 201 or consent of the instructor.

MECH 561
Mechanics of Condensed Matter
Definition of stress, strain and motion. Constitutive equations describing the mechanical and thermal behavior of elastic and viscoelastic materials. Relationships between macroscopic and microscopic stress and strain. Micromechanics of defects. Observables at the macroscopic and microscopic length scales in plasticity, fracture and fatigue.
Prerequisite: MECH 201 and MECH 202 or consent of the instructor.

PHYS 509
Condensed Matter Physics I
Free electron theory of metals. Crystal lattices. Reciprocal lattice. Classification of Bravais lattices. X-ray diffraction and the determination of crystal structures. Electrons in a periodic potential. Tight binding method. Band structures. Semi-classical theory of conduction in metals. Fermi surface. Surface effects.

PHYS 510
Condensed Matter Physics II
Classification of solids. Theory of harmonic crystals. Phonons and phonon dispersion relations. Anharmonic effects in crystals. Phonons in metals. Dielectric properties of insulators. Semiconductors. Diamagnetism and paramagnetism. Electron interactions and magnetic structure. Magnetic ordering. Superconductivity.

ECOE 521
Photonics and Lasers
Review of electromagnetism; electromagnetic nature of light, radiation, geometrical optics, Gaussian beams, transformation of Gaussian beams; electromagnetic modes of an optical resonator, interaction of light with matter, classical theory of absorption and dispersion, broadening processes, Rayleigh scattering, quantum theory of spontaneous and stimulated emission, optical amplification, theory of laser oscillation, examples of laser systems, Q switching and mode locking of lasers.
Prerequisite: ELEC 206 or consent of the instructor.

ECOE 522
Micro-Opto-Electro-Mechanical Systems
Introduction to Microsystems, MEMS and its integration with optics; microfabrication and process integration; MEMS modeling and design; actuator and sensor design; mechanical structure design; optical system design basics; packaging; optical MEMS application case studies; scanning systems (retinal scanning displays, barcode scanners); projection display systems (DMD and GLV); infrared imaging cameras; optical switching for telecommunications.
Prerequisite: ELEC 321 or consent of the instructor.

EOCE 525
Photonic Materials and Devices
Survey of the properties and applications of photonic materials and devices; semiconductors; photon detectors, light emitting diodes, noise in light detection systems; light propagation in anisotropic media, Pockels and Kerr effects, light modulators, electromagnetic wave propagation in dielectric waveguides, waveguide dispersion; nonlinear optical materials, second harmonic generation, Raman converters.
Prerequisite: ELEC 206 or PHYS 302

MASE 590
Seminar
A series of lectures given by faculty or outside speakers. Participating students must also make presentations during the semester.

MASE 596
Ph.D. Thesis
Independent research towards Ph.D. degree.

TEAC 500
Teaching Experience
Provides hands-on teaching experience to graduate students in undergraduate courses. Reinforces students' understanding of basic concepts and allows them to communicate and apply their knowledge of the subject matter.

ENGL 500
Graduate Writing
This is a writing course specifically designed to improve academic writing skills as well as critical reading and thinking. The course objectives will be met through extensive reading, writing and discussion both in and out of class. Student performance will be assessed and graded by Satisfactory/Unsatisfactory
Mühendislik ile ilgili diğer programlar: