Matematik Yüksek Lisans Programı

Sorularınız herhangi bir ücret alınmadan, doğrudan ilgili kuruma yönlendirilecektir Yeditepe Üniversitesi

Iteği göndermek için Gizlilik politikasını kabul etmelisiniz

Hakkında yorumlar Matematik Yüksek Lisans Programı - Kurumda - Kadıköy - İstanbul

  • Giriş gereklilikleri
    Fen Bilimleri Enstitüsü’ne kayıt süresi içinde başvuruların yapılması gerekmektedir. Kayıt Bürosu adaylardan aşağıdaki belgeleri istemektedir: Lisans diplomasının fotokopisi, 2 adet tavsiye mektubu, İngilizce yeterlilik belgesi, LES Puanı, Not çizelgesi (Transcript) Yapılacak görüşmede öğrencinin dil ve bilimsel donanımının yeterli olup olmadığı değerlendirilir ve hazırlık dönemine gerek olup olmadığına karar verilir. Tavsiye mektupları, dereceler, öğrencinin hedefleri konusundaki açıklamaları belirleyicidir.
  • Program tanımları
    MATEMATİK ANABİLİM DALI LİSANSÜSTÜ PROGRAMLARI

    Matematik kabul edilebilir aksiyomlar üzerine kurulu, mantık kurallarıyla çıkarımlar yapılan, mutlak denilebilecek gerçekliğe sahip bir çalışma alanıdır. Aksiyom ve sonuçların fiziksel gerçeklikle örtüştüğü durumlarda hemen hemen bütün bilim ve mühendislik dallarının konu edilebileceği uygulamalı matematik söz konusudur. Bilginin ve bilimin hızla değer kazanarak teknoloji, sanayi ve finans dünyasını şekillendirdiği günümüzde; matematik ve matematiksel düşünce hem değişik akademik alanlarda araştırma yapmak isteyenler hem de profesyonel iş yaşamını hedefleyenler için bir gerekliliktir.

    Matematikte lisans ve/veya yüksek lisans derecesi ile iş bulabilmek çoğu zaman uygulamalı matematiğin bazı alanlarında ve bilgisayar bilimlerinde eğitimi gerektirmektedir.

    Geleneksel uygulamalı matematik, fiziksel bilimlere (fizik, mühendislik, endüstri vb) yönelimli matematik anlamındadır ve bu alanlarda son derece geniş bir yelpazede çalışma olanağı vardır. Finas kuramcıları, ekonomistler, mühendisler, fizikçiler, bir kısım biyolog, kimyacı vb meslek sahiplerinin, kendilerine matematikçi denmese bile, iyi ve yeterli matematik eğitimi almış olmaları gerekmektedir.

    Öte yandan, karar verme bilimleri denilebilecek operasyon analizi, sistem analizi vb için, matematik ve sistem mühendisliğinin birinde lisans diğerinde yüksek lisans derecesi almak oldukça uygun bir eğitim olabilir. Aktuarya (sigortacılık) ve işletme için lineer cebir ve istatistik, bilgisayar bilimlerinde özellikle yazılım ve ağ mühendisliği konularında mantık, kombinatorik, sayılar kuramı ve cebir gerekli matematik olarak görülmektedir.

    Ortaöğrenim ve lise matematik öğretmenlerinin geniş bir matematik kültürüne sahip olmaları öğrettikleri parçaların bütün içindeki yerini gösterebilmeleri ve öğrenciler üzerinde matematik hakkında iyi bir izlenim bırakabilmeleri bakımından gereklidir.

    Bu veriler ışığında hazırlanan Matematik Yüksek Lisans ve Doktora programları Fen ve Mühendislik Fakülteleri (Matematik, Fizik, Kimya, Biyoloji bölümleri ile Makine, Elektrik ve Elektronik, Bilgisayar, Sistem, Kimya Mühendislikleri bölümleri) ile Eğitim Fakültelerinin temel bilimler bölümlerinden Lisans ve Yüksek Lisans dereceleri alan öğrencilerin tümüne açık bir programdır.

    Yetenekli ve matematiği seven öğrencilerin doktora derecesi alarak üniversitede eğitim ve araştırma çalışmalarını hedeflemeleri idealdir. Bu alandaki iş fırsatları ülkemizde (özellikle batılı ülkelere göre) daha fazladır. Doktora mezunları araştırma grupları bulunan büyük şirketlerde ve devlet kurumlarında da iş bulabilirler.

    Başka bir Enstitüde bir yarıyılını başarı ile tamamlayan öğrenciler de programlara başvurabilirler.

    Tezsiz Yüksek Lisans programı otuz kredilik on ders ile kredisiz proje dersinden oluşur. Derslerden altısı zorunludur. Gerek duyulduğunda iki ders lisans programından alınabilir.

    Tezli Yüksek Lisans programı yirmibir kredilik yedi ders ile kredisiz seminer dersi ve tezden oluşur. Üç ders zorunludur. Başarılı olanlar doktora programına başlayabilir.

    Matematik Bölümü araştırma görevlilerini lisanüstü öğrencileri arasından seçmeyi benimsemektedir.
    Doğrusal olmayan türevli denklemler, dinamik sistemler, türevsel geometri, fonksiyonel analiz, yaklaşım kuramı, tam çözülebilir sistemler, Hamilton yapıları, simplektik geometri, geometrik mekanik, Lie grupları ve Lie cebirleri bölümün temel araştırma alanlarına örnek olarak sayılabilir. Lisanüstü derslerin yanısıra düzenli seminerler öğrencileri çalışma alanlarında daha ileri düzeye taşımayı hedeflemektedir. Seminerlerin konusu bölüm elemanlarının ve ziyaretçilerin araştırma konularına göre zamanla değişmektedir.

    GRADUATE PROGRAMS


    Applications:
    The programs are open to students from science and engineering departments. Students holding a B.S. degree from a department other than mathematics are required to complete a preparotory semester in mathematics undergraduate program.

    Students from other Instituitions may also apply after completing one semester succesfully in their Instituitions.

    Applications are accepted by The Graduate Institute for Science and Engineering twice a year. For registration candidates should have;
    1. Copy of B.S. diploma
    2. Two reference letters
    3. Qualification record for English (an examination is anounced by Yeditepe University during registration)
    4. LES record
    5. Transcript

    Scientific and language qualifications of the candidate will be the subjects of an interview with the members of the department. Need for a preparotory semester either for English or for Mathematics background will be decided. Degrees, reference letters and student’s own explanations of his/her goals will be essential.


    MASTER OF SCIENCE WITHOUT THESIS
    This program is designed for educational purposes. Its aim is to advance and update the mathematical knowledge of high school teachers and scientists using intensive mathematics in their own research areas, such as theoretical physicists and engineers.

    Program:
    Master of Science in Mathematics (without thesis) program consists of ten graduate courses of at least thirty credits and an additional non-credit project course. Six of the courses are compulsory. If necessary, two of the courses may be chosen from the undergraduate program.

    COURSES
    Compulsory:
    MATH 511     Differential Geometry
    MATH 521     Algebra I
    MATH 531     Topology
    MATH 541     Ordinary Differential Equations
    MATH 551     Functional Analysis I
    MATH 553     Complex Analysis

    MASTER OF SCIENCE WITH THESIS
    The aim of this program is to make research in various areas of mathematics such as geometry, functional analysis, nonlinear differential equations as well as in applications of mathematics to basic problems from physics and engineering.

    Program:
    Master of Science in Mathematics (with thesis) program consists of seven graduate courses of at least twenty one credits, an additional non-credit seminar course and thesis. Three of the seven courses are compulsory. At the end of the second semester students must have an advisor and make a proposal for the thesis. The elective courses are chosen in accordance with this proposal. Basic research areas of the department are nonlinear differential equations, dynamical systems, differential geometry, gravitation and field theories, functional analysis, approximation theory, completely integrable systems and geometric mechanics.

    Opportunities:
    The Mathematics Department adopted the policy of hiring research assistants among graduate students. Students completing the M.S. program may apply to Ph. D. Program of the department. Qualified students with B.S. degree may directly apply to Ph.D. program.

    COURSES
    Compulsory:
    MATH 531     Topology
    MATH 551     Functional Analysis I
    MATH 553     Complex Analysis
    MATH 600     Thesis (non-credit)
    MATH 590     Seminar (non-credit)

    DERS İÇERİKLERİ

    DESCRIPTIONS OF COURSES:

    MATH 510 CONCEPTS OF GEOMETRY FOR MATHEMATICS TEACHERS
    Euclidean and non-Euclidean geometries. Calculus on and submanifolds of . Differential geometry of curves and surfaces. Vectors, tensors, multivectors and differential forms. Flows, symmetries and geometries. Structure equations. Lie groups and Lie algebras. Constructions in modern differential geometry.

    MATH 511 DIFFERENTIAL GEOMETRY
    Smooth mappings. Implicit function theorem. Submanifolds of Euclidean space. , analytic and smooth manifolds. Examples: projective spaces, Grassmann manifolds, Riemann surfaces. Manifolds with boundary. Partition of unity. Mappings of manifolds, regular and singular points, immersions, submersions and embeddings. Sard’s theorem. Tangent bundle. Existence of Riemannian metric. Vector fields, flows and differentials. Algebra of vector fields. Cotangent bundle. Tensor fields, multi-vectors, exterior forms and their algebras. Applications to mechanics and Lie groups.

    MATH 512 RIEMANNIAN GEOMETRY
    Riemannian manifolds. Absolute differentiation and connection. Riemann curvature, Bianchi identities. Geometry of hypersurfaces, Riemannian immersions and submersions. Completeness. Isometries and Killing vectors. Homogeneous and symmetric spaces. Properties of curvature tensors. Variational principles.
    Prerequisite: Math 511.

    MATH 521 ALGEBRA I
    Groups; Sylow theorems. Direct sums and direct products. Free groups. Action of a group on a set. Rings; homomorphisms, commutative rings. Principal ideal domains, unique factorization domains. Noetherian rings. Rings of quotients. Localization.

    MATH 522 ALGEBRA II
    Galois theory. Categories and functors. Module categories. Tensor products. Projective and injective modules. Primitive rings. Jacobson radical. Semi-simple rings. Decomposition theorems.

    MATH 523 LIE GROUPS AND LIE ALGEBRAS
    Manifolds, Lie groups and Lie algebras. Exponential map, Baker-Campbell-Hausdorff formula. Lie’s fundamental theorems. Nilpotent and solvable Lie algebras. Cartan’s criterion. Semisimple Lie algebras. Casimirs. The theorem of Weyl. Levi decomposition. Global results.
    Prerequisite: Math 511.

    MATH 524 GEOMETRIC CONTROL THEORY
    General control systems, orbits, transitivity, reachability, controllability, observability, minimal realization. Linear control systems on , rank conditions. Polynomial control systems, feedback, bounded controls, bang-bang principle. Systems on Lie groups and homogeneous spaces, controllability of affine systems, characterization of observability, normalizer, drift vector field. Applications.
    Prerequisite: Math 523.

    MATH 531 TOPOLOGY
    Topological spaces and continuous mappings. Metric topology. Topology of and . Factor spaces and quotient topology. Classification of surfaces. Orbit spaces, projective and lens spaces. Operations on sets, completeness. Connectedness, countability and separation axioms. Normal spaces. Compactness and compactifications. Metrization.

    MATH 532 ALGEBRAIC TOPOLOGY
    Topology of space of continuous mappings. Homotopy. Extension. Retraction and deformation. Algebraization of topological problems. Homotopy groups. Fundamental group. Computations of the fundamental and homotopy groups of closed surfaces, topological invariance of the Euler characteristics. Homology groups of simplicial complexes and polyhedra. Barycentric subdivision, simplicial mappings. Singular homology. Homology groups of spheres, cell complexes and projective spaces. Degree of a mapping. Lefschetz number of simplicial and continuous mappings.
    Prerequisite: Math 531.

    MATH 533 INTRODUCTION TO DIFFERENTIAL TOPOLOGY
    Locally trivial fiber spaces. Lifts of mappings and covering homotopy. Vector bundles and morphisms. Homotopy groups, universal covering. Monodromy. Cellular structure. Index of critical points. Morse lemma. Gradient fields. Homotopy type and change. de Rham cohomology, homotopy operator and Poincaré lemma. Stokes’ theorem. de Rham’s isomorphism theorem. Applications.
    Prerequsite: Math 531, Math 511.

    MATH 541 ORDINARY DIFFERENTIAL EQUATIONS
    First order equation. Cauchy-Euler method. Continuation of solution. Systems of equations. Lipschitz conditions. Linear systems. Green’s function. Singularities of linear autonomous systems. Nonlinear equations. Poincare-Bendixson theorem. Poincare index. Limit cycles.

    MATH 542 PARTIAL DIFFERENTIAL EQUATIONS I
    Well-posed problems. Classical solutions. Weak solutions and regularity. Transport, Laplace, Heat, Wave equations. Non-linear first order PDE’s, Hamilton-Jacobi theory. Separation of variables, similarity solutions, transform methods. Converting non-linear into linear PDE. Asymptotics, power series method.

    MATH 550 CONCEPTS OF ANALYSIS FOR MATHEMATICS TEACHERS
    Cartesian tradition. Calculus. Algebraic conceptions of Euler and Lagrange. Functions. Analytical mechanics. Potential theory. Gauss, Green and Stokes theorems. Cauchy and Weierstrass. Complex functions. Riemann and Lebesgue integrals. Modern foundation of analysis. Topics in the theory of differential equations, variational calculus and functional analysis.

    MATH 551 FUNCTIONAL ANALYSIS I
    Linear vector spaces, subspaces, direct sum. Linearly independent sets, Hamel bases. Linear transformations, linear functionals. Eigenvalues and eigenvectors of linear operators. Introduction to topology. Numerical functions. Measures of sets, integration of numerical functions. Metric spaces, completeness. Contraction mappings. Compact metric spaces. Approximations. Normed linear spaces, norm and semi-norm topologies. Bounded linear operators.

    MATH 552 FUNCTIONAL ANALYSIS II
    Normed linear spaces, topological dual, weak and strong topologies. Compact and closed operators. Inner product spaces, orthogonal subspaces. Orthonormal sets and Fourier series. Duals of Hilbert spaces. Linear operators on Hilbert spaces and their adjoints. Spectral theory of linear operators, resolvent set and spectrum. Spectrum of bounded linear operators. Spectral analysis on Hilbert spaces. Introduction to non-linear functional analysis, Gâteaux and Fréchet derivatives of non-linear operators. Integration of operators.

    MATH 553 COMPLEX ANALYSIS
    Analytic functions. The argument principle. Conformal mappings. The Riemann mapping theorem. Infinite products. The Weierstrass factorization theorem. The Mittag–Lefler theorem. Analytic continuation. The Picard theorem.

    MATH 554 APPROXIMATION THEORY
    Preliminaries, polynomials of best approximation. Existence, characterizations and uniqueness of the best polynomial approximation. Best trigonometric approximation. Degree of approximation by trigonometric functions. Inverse theorems for periodic functions. Rational approximation.

    MATH 555 MEASURE AND INTEGRATION THEORY
    Measures, outer measures. Extension of measures. Measurable functions. Integrable functions. Sequences of integrable functions. Properties of integrals. Signed measures. Hahn and Jordan decompositions. The Radon-Nikodym theorem. Product Spaces.

Matematik,uygulamalı matematik ile ilgili diğer programlar

Bu site çerezleri kullanmaktadır.
Devam etmek istiyorsanız, yelken, kabul eder.
Daha fazlası  |